目的 研究典型舰载电柜在强冲击载荷下的动力学响应特性,建立考虑钢丝绳隔振器非线性冲击特性的动力学模型,揭示电柜内部冲击环境的分布规律。方法 基于试验数据和质量等效方法定义钢丝绳隔振器的非线性参数,建立典型舰载电柜的有限元模型,采用显式动力学方法进行动力学计算,通过模态分析获取电柜前6阶振型特征,结合垂向冲击试验验证模型的准确性。结果 在不同工况下,计算误差均低于10%。冲击响应谱分析显示,电柜底部区域在低频段的位移谱值较高,在高频段加速度谱值显著高于其他区域。电柜门板和元件安装板的冲击环境基本一致,电柜底部位置冲击环境更为严苛。结论 电柜内部冲击环境分布存在显著差异,安装位置对元器件的冲击响应具有决定性影响,隔振系统的频率匹配特性特别是低阶固有频率12.5~29.9 Hz对整体抗冲击性能至关重要。研究结果为舰载设备抗冲击设计中关键部位的识别和优化布局提供了理论依据。
Abstract
To investigate the dynamic response characteristics of typical shipborne electrical cabinets under impact loads, the work aims to establish a dynamic model that incorporates the nonlinear impact behavior of wire rope vibration isolators and elucidate the distribution patterns of internal shock environments within the cabinets. The nonlinear parameters of the wire rope vibration isolator were determined based on experimental data and the mass equivalence method. A finite element model of a representative shipborne electrical cabinet was developed, and explicit dynamic methods were employed for dynamic simulations. Through modal analysis, the first six vibration mode characteristics of the cabinet were obtained. The accuracy of the model was validated through vertical impact tests, with calculation errors under various operating conditions remaining below 10%. Shock response spectrum analysis revealed that displacement spectral values were relatively high in the low-frequency range at the bottom area of the cabinet, while acceleration spectral values were more pronounced in the high-frequency range. The shock environment experienced by the cabinet door panel and component mounting plate was largely similar. However, the bottom region was subject to a more severe shock environment. Significant variations exist in the internal shock environment distribution, with installation location playing a decisive role in component shock response. Furthermore, the frequency matching characteristics of the vibration isolation system, especially the low-order natural frequencies of 12.5-29.9 Hz, significantly affect the overall shock resistance performance. These findings provide a theoretical foundation for identifying critical components and optimizing their layout in anti-impact design for shipborne equipment.
关键词
舰载设备 /
钢丝绳隔振器 /
非对称迟滞 /
有限元方法 /
显式动力学分析 /
冲击环境
Key words
shipborne equipment /
wire rope vibration isolator /
asymmetric hysteresis /
FEM /
explicit dynamic /
shock environment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘建湖. 舰船非接触水下爆炸动力学的理论与应用[D]. 无锡: 中国船舶科学研究中心, 2002.
LIU J H.Theory and Application of Non-Contact Underwater Explosion Dynamics of Ships[D]. Wuxi: China Ship Scientific Research Center, 2002.
[2] 汪玉, 华宏星. 舰船现代冲击理论及应用[M]. 北京: 科学出版社, 2005.
WANG Y, HUA H X.Modern Ship Impact Theory and Its Application[M]. Beijing: Science Press, 2005.
[3] 陈鹏, 王红岩, 郝贵祥, 等. 薄壳结构跌落冲击仿真与试验研究[J]. 装甲兵工程学院学报, 2011(5): 20-24.
CHEN P, WANG H Y, HAO G X, et al.Simulation and Test Study on Drop Impact of a Shell Structure[J]. Journal of Academy of Armored Force Engineering, 2011(5): 20-24.
[4] 黄高文, 沈文军. 舰用机柜抗强冲击的优化设计[J]. 电子机械工程, 2010, 26(1): 10-14.
HUANG G W, SHEN W J.Optimized Design of Marine Cabinet for Resisting Strong Impact[J]. Electro-Mechanical Engineering, 2010, 26(1): 10-14.
[5] 匡锐, 周海涛, 王迪, 等. 基于瞬态动力学仿真分析的某舰载发控仪机柜抗冲击设计研究[J]. 舰船电子工程, 2019, 39(8): 194-198.
KUANG R, ZHOU H T, WANG D, et al.Study of a Shipborne Console Cabinet Impact Resistance Design Based on Transient Dynamics Simulation Analysis[J]. Ship Electronic Engineering, 2019, 39(8): 194-198.
[6] 杨宇军. ANSYS动力学仿真技术在航天计算机机箱结构设计中的应用[J]. 电子机械工程, 2003, 19(5): 42-47.
YANG Y J.Vibration Analysis of the Aerospace Rugged Computer Using ANSYS Dynamic Simulation Technique[J]. Electro-mechanical Engineering, 2003, 19(5): 42-47.
[7] 李亚璘, 欧阳光耀. 分配电箱冲击试验与数值仿真[J]. 中国舰船研究, 2011, 6(4): 34-36.
LI Y L, OUYANG G Y.Shock Test and Simulation of Distribution Box[J]. Chinese Journal of Ship Research, 2011, 6(4): 34-36.
[8] 罗贤成. 船用电子机柜力学性能仿真计算[J]. 指挥控制与仿真, 2024, 46(6): 110-116.
LUO X C.Simulation Calculation on Mechanical Properties of Marine Electronic Cabinet[J]. Command Control & Simulation, 2024, 46(6): 110-116.
[9] 孟庆鹏, 庄文许, 顾郑强. 某舰载雷达发射机机柜抗冲击仿真分析[J]. 雷达与对抗, 2014, 34(3): 39-42.
MENG Q P, ZHUANG W X, GU Z Q.Research on Anti-Shock Simulation of Transmitter Cabinet of a Shipborne Radar[J]. Radar & ECM, 2014, 34(3): 39-42.
[10] 刘兆峰, 陈卫, 姜智锐, 等. 核电数字化仪控系统机柜抗冲击分析技术[J]. 上海交通大学学报, 2018, 52(S1): 5-9.
LIU Z F, CHEN W, JIANG Z R, et al.Anti-Impact Analysis Technology of Cabinet of Nuclear Power Digital Instrument Control System[J]. Journal of Shanghai Jiao Tong University, 2018, 52(S1): 5-9.
[11] GUO J, HUANG S Z, KANG Y W, et al.Experimental Research on the Impact Environment of Multiplate Cabinet[J]. Shock and Vibration, 2019, 2019(1): 6283765.
[12] 王东伟, 刘明星, 吴霄, 等. 电子机柜瞬时冲击的动力学行为[J]. 上海交通大学学报, 2019, 53(S1): 109-117.
WANG D W, LIU M X, WU X, et al.Dynamic Behavior of Instantaneous Impact of Electronic Cabinet[J]. Journal of Shanghai Jiao Tong University, 2019, 53(S1): 109-117.
[13] 吕成刚. 船用电子机柜易损性分析及毁伤准则研究[D]. 武汉: 武汉理工大学, 2022.
LYU C G.Study on Vulnerability Analysis and Damage Criterion of Marine Electronic Cabinet[D]. Wuhan: Wuhan University of Technology, 2022.
[14] 王其东, 杨竹丰, 颜肖龙, 等. 电子机柜结构连接部位建模[J]. 电子机械工程, 2005, 21(2): 22-23.
WANG Q D, YANG Z F, YAN X L, et al.Modeling of Electronic Cabinet Joints[J]. Electro-mechanical Engineering, 2005, 21(2): 22-23.
[15] 王冬雪. 钢丝绳隔振器的力学特性分析及迟滞模型研究[D]. 沈阳: 沈阳工业大学, 2021.
WANG D X.Mechanical Characteristics Analysis and Hysteresis Model Study of Wire Rope Isolator[D]. Shenyang: Shenyang University of Technology, 2021.
[16] 朱曾辉, 李舒, 宋骏琛, 等. 舰载机柜钢丝绳隔振器试验研究[J]. 电子机械工程, 2019, 35(5): 25-28.
ZHU Z H, LI S, SONG J C, et al.Experimental Study on Wire Rope Isolator for Shipborne Cabinets[J]. Electro-Mechanical Engineering, 2019, 35(5): 25-28.
[17] 王冬雪, 孟宪松, 闫明, 等. 钢丝绳隔振器的数学建模与参数识别[J]. 机械设计与制造, 2023(9): 125-127.
WANG D X, MENG X S, YAN M, et al.Mathematical Modeling and Parameter Identification of Wire Rope Vibration Isolator[J]. Machinery Design & Manufacture, 2023(9): 125-127.
[18] 黄映云, 秦俊明, 吴善跃, 等. 钢丝绳隔振器冲击特性试验研究[J]. 海军工程大学学报, 2007, 19(1): 23-26.
HUANG Y Y, QIN J M, WU S Y, et al.Experimental Investigation on Shock Characteristic of Wire Rope Isolator[J]. Journal of Naval University of Engineering, 2007, 19(1): 23-26.
[19] 姜宏亮, 闫明, 惠安民. T型钢丝绳隔振器动态特性试验研究[J]. 河南科技, 2020, 39(16): 33-36.
JIANG H L, YAN M, HUI A M.Experimental Research on the Dynamic Characteristics of T-Type Wire Rope Vibration Isolator[J]. Henan Science and Technology, 2020, 39(16): 33-36.
[20] 朱跃峰. 基于ABAQUS的显式动力学分析方法研究[J]. 机械设计与制造, 2015(3): 107-109.
ZHU Y F.Research on Analysis Methods of Explicit Dynamics Based on ABAQUS[J]. Machinery Design & Manufacture, 2015(3): 107-109.
[21] 尹群. 水面舰船设备冲击环境与结构抗冲击性能研究[D]. 南京: 南京航空航天大学, 2006.
YIN Q.Study on Impact Environment and Structural Impact Resistance of Surface Ship Equipment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
[22] 董九亭, 刘建湖, 汪俊, 等. 水下爆炸下舰艇不同部位冲击环境数值分析[J]. 中国舰船研究, 2018, 13(5): 32-38.
DONG J T, LIU J H, WANG J, et al.Numerical Analysis on Shock Environment in Different Ship Regions Subjected to Underwater Explosion[J]. Chinese Journal of Ship Research, 2018, 13(5): 32-38.
[23] MARTIN J N, SINCLAIR A J, FOSTER W A.On the Shock-Response-Spectrum Recursive Algorithm of Kelly and Richman[J]. Shock and Vibration, 2012, 19(1): 19-24.
[24] NEWTON R E.Fragility Assessment Theoryand Test Procedure[J]. Monterey Research Laboratory Inc Monterey Ca, 1968, 2006: 04846.
[25] 吴桐, 冯麟涵. 冲击下舰载机柜内部冲击环境分析[J]. 兵器装备工程学报, 2018, 39(10): 58-62.
WU T, FENG L H.Analysis of Shock Environment in Shipboard Aircraft Cabinet under Shock[J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 58-62.